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peaks. If the speech were derived from a local micro-
phone, a fixed bias might suffice for this. If a distant
microphone were employed, however, the bias would
have to be derived automatically, since the polarity of
the speech wave would be uncertain. Then, also, the
frequencies on the line are assumed to be biased by
shifting the carrier frequencies, so as to center the
peaks of the instantaneous frequencies in the band.
Physical means for obtaining these biases could doubt-
less be devised, if desired.

IV. SUMMARY OF RESULTS

Table II gives the swing ratios for the several kinds
of automatic level adjustment described above, derived
as described from ratios of speech peaks which will be
exceeded by 10 per cent of the voices. The computed
swing ratio is included in the table for comparison.

TABLE II
SWING RATIOS FOR SPEECH

No 3,000-cps
Transmitter Type of Regulation Filter Filter

PM FM PM FM

Fl Computed in Section 2 1.5 0.6

Fl A-Constant input volume 1.1 1.0 1.0 0.9
Fl B-Constant peak level of

speech 1.5 0.8 1.4 0.7
Fl C-Constant phase peaks 1.5 1.2 1.4 1.1
Fl D-Spread centered 1.4 0.9 1.3 0.8

Moving-coil A-Constant input volume 1.1 0.5 0.8 0.5
Moving-coil B-Constant peak level of

speech 1.7 0.4 1.0 0.4
Moving-coil C-Constant phase peaks 1.7 0.6 1.0 0.6
Moving-coil D-Spreads centered 1.3 0.5 0.8 0.5

Note: PM = phase modulation. FM = frequency modulation.

CONCLUSIONS
In closing, the following comments may be made

on the data which have been presented:
(1) The computed swing ratios tend to be equal to or

higher than the experimentally determined values for
phase modulation, and lower than the experimental
values for frequency modulation. This is probably
largely because the computation was based on rms
speech voltages, while the experimental method was
based on measured peak speech voltages.

(2) Of the four methods of volume regulation as-
sumed in analyzing the experimental data, the method
of regulating to constant voltage peaks applied to the
phase modulator results in the greatest swing ratios,
and therefore appears the most efficient in regard to
use of the modulator. This is of practical importance,
since the greater the efficiency, the higher the carrier
frequency at which the modulator may operate, and
the fewer the required number of stages of subsequent
frequency multiplication.

(3) The 3,000-cps low-pass filter had little effect on
the swing ratios, except in the case of the moving-coil
microphone and phase modulation.

(4) The moving-coil microphone without any filter
gave swing ratios substantially the same as the Fl
carbon microphone for phase modulation, but only
about half as great for frequency modulation.
A general conclusion is that the swing ratios are quite

dependent on the microphone and its circuits, on the
kind of volume regulation employed, and probably on
other features of the circuit. For accurate results, the
swing ratios should therefore be determined for the
particular circuits which are to be used. The figures
derived here will, however, serve to indicate roughly the
values to be expected.

The Helical Antenna *
JOHN D. KRAUSt, SENIOR MEMBER, IRE

Summary-The helix is a fundamental form of antenna of which
loops and straight wires are limiting cases. When the helix is small
compared to the wavelength, radiation is maximum normal to the
helix axis. Depending on the helix geometry, the radiation may, in
theory, be elliptically, plane, or circularly polarized.

When the helix circumference is about 1 wavelength, radiation
may be maximum in the direction of the helix axis and circularly
polarized or nearly so. This mode of radiation, called the axial or
beam mode, is generated in practice with great ease, and may be
dominant over a wide frequency range with desirable pattern, im-
pedance, and polarization characteristics. The radiation pattern is

* Decimal classification: R125.1 XR326.61. Original manuscript
received by the Institute, June 7, 1948. Presented in part, 1948 IRE
National Convention, New York, N. Y., March 23, 1948.

t Department of Electrical Engineering, Ohio State University,
Columbus, Ohio.

maintained in the axial mode over wide frequency ranges because of
a natural adjustment of the phase velocity of wave propagation on the
helix. The terminal impedance is relatively constant over the same
frequency range because of the large initial attenuation of waves on
the helix. The conditions for circular polarization are analyzed, and
the importance of the array factor in determining the radiation pat-
tern of a long helix is discussed.

INTRODUCTION
A HELIX is a fundamental geometric form. It has

applications in many branches of physics and
engineering. For example, in mechanical systems

the helix or coil spring is a familiar structure; in electri-
cal systems, a helical conductor or inductor is a common
type of circuit element; and in many dynamic phenom-

1949 263



PROCEEDINGS OF THE I.R.E.

ena, particles follow helical paths. Recently the helix
has been applied as a beam antenna.'-6

In considering the helix as an antenna, it is important
that it be regarded, not as a unique or special form of an-
tenna, but rather as a basic type of which the more
familiar loop and straight-wire antennas are merely spe-
cial cases.2 Thus, a helix of fixed diameter collapses to
a loop as the spacing between turns approaches zero,
and, on the other hand, a helix of fixed spacing straight-
ens into a linear conductor as the diameter approaches
zero. It is the purpose of this paper to discuss the helical
antenna from this general point of view including the
axial or beam mode of radiation as a particular case.
The possibility of a normal mode of radiation, as sug-
gested by Wheeler,7 is also included as a special case.
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Fig. 1-Relation of helix dimensions.

Referring to Fig. 1, the following symbols will be used
to describe a helix:

D=diameter of helix (center-to-center)
S=spacing between turns (center-to-center)
a pitch angle=arctan S/IrD
L=length of one turn
n -number of turns
A =axial length = nS
d=diameter of helix conductor.

A coaxial transmission line and ground plane as used
for exciting the helix in the beam mode of radiation are
shown by the dashed lines. A subscript X signifies that
the dimension is measured in free-space wavelengths.
For example, DA is the helix diameter in free-space wave-
lengths.

1 J. D. Kraus, "Helical beam antenna," Electronics, vol. 20, pp.
109-111; April, 1947.

2 J. D. Kraus and J. C. Williamson, "Characteristics of helical
antennas radiating in the axial mode," Jour. Appi. Phys., vol. 19,
pp. 87-96; January, 1948.

3 0. J. Glasser and J. D. Kraus, "Measured impedances of helical
beam antennas," Jour. Appi. Phys., vol. 19, pp. 193-197; February,
1948.

4 J. D. Kraus, "Helical beam antennas for wide-band applica-
tions," PROC. I.R.E., vol. 36, pp. 1236-1242; October, 1948.

J. D. Kraus, "Design data for helical beam antennas," to be
published.

6 J . D. Kraus, "Measured phase velocities on helical conductors, "
to be published.

7H. A. Wheeler, "A helical antenna for circular polarization,"
PROC. I.R.E., vol. 35, pp. 1484-1488; December, 1947.

TRANSMISSION AND RADIATION MODES OF HELICES

The dimensions of a helix are very conveniently il-
lustrated by a diameter versus spacing chart or, as in
Fig. 2, by a circumference versus spacing chart. On this
chart, the dimensions of a helix may be expressed either
in rectangular co-ordinates by the spacing Sx and cir-
cumference irDx or in polar co-ordinates by the length
of one turn Lv, and the pitch angle a.
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Fig. 2-Circumference versus spacing chart for helices showing re-
gions for normal radiation mode (shaded) and axial or beam mode
(cross hatched).

The electromagnetic field around a helix may be re-
garded from two points of view, as (1) a field which is
guided along the helix, and (2) a field which radiates. In
the present discussion, it will be convenient to treat
these as independent. As regards the first point of view,
it is assumed that an electromagnetic wave may be prop-
agated without attenuation along an infinite helix in
much the same manner as along an infinite transmission
line or waveguide. This propagation may be described
by the transmission mode, a variety of different modes
being possible. On the other hand, a field which radiates
may be described by the radiation pattern of the an-
tenna. It will be convenient to classify the general form
of the pattern in terms of the direction in which the
radiation is a maximum. Although an infinite variety of
patterns is possible, two kinds are of particular interest.
In one, the direction of the maximum radiation is nor-
mal to the helix axis. This is referred to as the normal
radiation model or, in shorthand notation, as the Rn
mode. In the other, the direction of maximum radiation
is in the direction of the helix axis. This is referred to as
the axial or beam radiation mode, or, in shorthand nota-
tion, as the Ra mode.
The lowest transmission mode for a helical conductor

has adjacent regions of positive and negative charge
8 The word "mode" is used here in its general sense to indicate

merely the general form or type of radiation pattern. In the case of
"transmission mode," the word "mode" is employed in a more re-
stricted sense to indicate a particular field configuration. In discussing
transmission modes, it is assumed that the helix is infinitely long.
However, a radiation pattern implies a helix of finite length, it being
assumed that the wave propagates along the finite helix in a particu-
lar transmission mode or modes in the same manner as along a por-
tion of an infinite helix, end effects being neglected.
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separated by many turns. This mode will be designated
as the To mode and the instantaneous charge distribu-
tion is suggested by Fig. 3 (a). The To mode is important
when the length of one turn is small compared to the
wavelength L<<X, and is the mode commonly occurring

To Q9Q9Q960Q (a)

may be linearly or circularly polarized.7 These cases are
discussed further in a later section (Normal Radiation
Mode). We can describe both the transmission mode and
radiation pattern for very short, small helices by com-
bining the To transmission mode and the Rn radiation
mode designations as ToRn. This designation is applied
to the region of helix dimensions near the origin in Fig. 2.

T, QQOQQQQQQQ (b)

- + -O -0- _+0+ (c)
T, T2 T3

Fig. 3-Approximate charge distribution on helices for
different transmission modes.

on low-frequency inductors. It is also the dominant mode
in the traveling-wave tube.9-'3 Since the adjacent re-
gions of positive and negative charge are separated by
an appreciable axial distance, a substantial axial com-
ponent of the electric field is present, and in the travel-
ing-wave tube this field interacts with the electron
stream. If the criterion Lx < 2 is arbitrarily selected as a
boundary for the To transmission mode, the region of
helix dimensions for which this mode is important is
shown by the shaded area in Fig. 2.

Theoretically, it is of interest to examine some of the
possible radiation patterns associated with the To trans-
mission mode. Only the simplest radiation case will be
considered. This occurs when the helix is very short so
that nL<<X and the assumption is made that the cur-
rent on the helix is uniform in magnitude and in-phase
along its length.'4 Referring to Fig. 3(a), the length is
much less than that between adjacent regions of maxi-
mum positive and negative charge. Theoretically, it is
possible to approximate this condition with a standing
wave on a small end-loaded helix. rfhe terminal imped-
ance of such a small helix would be sensitive to fre-
quency and the radiation efficiency would be low. How-
ever, let us assume that appreciable radiation can be
obtained. The maximum radiation is then normal to the
helix axis for all helix dimensions, provided only that
nL<<X. Hence, this condition is referred to as a normal
radiation mode R.. Referring to Fig. 4, any compo-
nent E of the distant electric field perpendicular to the
radius vector is given approximately by E=k sin 0,
where k is a constant. The radiation is, in general, el-
liptically polarized, but for particular helix dimensions

9 R. Kompfner, "The traveling-wave tube as amplifier at micro-
waves," PROC. I.R.E., vol. 35, pp. 124-127; February, 1947.

10 J. R. Pierce and L. M. Field, "Traveling-wave tubes," PROC.
I.R.E., vol. 35, pp. 108-111; February, 1947.

11 J. R. Pierce, 'Theory of the beam-type traveling-wave tube,"
PROC. I.R.E., vol. 35, pp. 111-123; February, 1947.

12 L. J. Chu and D. Jackson, "Field theory of traveling-wave
tubes," PROC. I.R.E., vol. 36, pp. 853-863; July, 1948.

13 C. C. Cutler, "Experimental determination of helical-wave
properties," PROC. I.R.E., vol. 35, pp. 230-233; February, 1948.

14 It is assumed here that the phase velocity on the helical con-
ductor is approximately that of light. The in-phase condition requires
an infinite phase velocity, but this can be approximated by consider-
ing only short helices nL<KX.

Fig. 4-Sinusoidal field variation for small helices.

A first-order transmission nmode, designated T,, has
adjacent regions of maximum positive and negative elec-
tric charge approximately one-half turn apart or near
the opposite -ends of a diameter, as suggested in Fig.
3(b) for the case of a small pitch angle. This mode is
important when the length of one turn is of the order of
the wavelength (L--X). It is found that the radiation
from helices of this turn length and of a number of turns
(n > 1) is usually a maximum in the direction of the helix
axis and is circularly polarized, or nearly so.' 2 This type
of radiation pattern is referred to as the axial or beam
mode of radiation Ra. This radiation mode occurs for a
wide range of helix dimensions and, being associated with
the T, transmission mode, the combined designation ap-
propriate to this region of helix dimensions is TIRa. The
axial type of radiation is discussed further in a later sec-
tion (Axial Radiation Mode).

Still higher-order transmission modes, designated T2,
T3, etc., will have the approximate charge distributions
suggested in the one-turn views of Fig. 3 (c) for the case of
a small pitch angle. For these modes to exist, the length of
one turn must generally be at least one wavelength.'5
The normal Rn and axial R. radiation modes are, in

reality, special cases for the radiation patterns of helical
antennas. In the general case, the maximum radiation is
neither at 0 = 0 nor at 0=900 but at some intermediate
value, the pattern being conical or multilobed in form.2,4

THE NORMAL RADIATION MODE
The direction of maximum radiation is always normal

to the helix axis when the helix is small (nL<<X). Refer-
ring to Fig. 5(a), the helix is coincident with the polar or
y axis. At a large distance r from the helix, the electric
field may have, in general, two components Ep and Eo,
as shown.
Two limiting cases of the small helix are: (1) the short

electric dipole of Fig. 5 (b), a = 900, and (2) the small loop
of Fig. 5(c), a= 00. In the case of the short electric di-
pole, E =0 everywhere and the distant electric field

15 The phase velocity along the helical conductor for T1 and higher
modes may differ considerably from that of light. It is often less, and,
as shown later, it may be a function of the helix pitch angle and
diameter.
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IY

Helix Dipole Loop

(a) (b) (c)
Fig. 5-Relation of field components to helix, dipole, and loop.

the length of one "turn" is now given by L= S+irD, the
far field pattern will be independent of the number of
turns. Hence, to simplify the analysis, only a single
turn will be considered. The electric field components at
a large distance are then given by (1) and (2). The
operator j in (1) and its absence in (2) indicates that
ER and Eo are in time phase quadrature. Taking the
ratio of the magnitudes of E0 and Eo, we have

Eo SX

Ek 2irA (3)

has only an Eo component. On the other hand, with the
small loop, Eo =0 everywhere and the distant electric
field has only an E4 component. By the retarded poten-
tial method, it may be shown that Eo at a large distance
from a short electric dipole (r>>X>>s) is given by'6"7

jco[I]s sin 0 j60-r[I] sin 0 s
Eo _- (1)

47recr' r X

where
s =length of short dipole
w = 27rf
r=distance from origin
c= velocity of light (in free space)
E = dielectric constant of medium (free space)

and [I] = retarded value of the current =10 exp [jw
(t-r/c) ].

In an analogous way, E4 at a large distance from a
short magnetic dipole or from the equivalent small loop
(r>>A»>>D) is

E
1207r2 [I] sinG A

r 2(2)

where
A= area of loop = 7rD2/4

[I] =retarded value of the current on the loop.
If nL<<X, a helix may be considered, as has been done

by Wheeler,7 to be a combination of a series of loops and
linear conductors as illustrated in Fig. 6. Each turn is
assumed to consist of a short dipole of length S coh-
nected in series with a small loop of diameter D. Fur-
ther, the current on the helix of Fig. 6 is assumed to be
uniform and in phase over the entire length. The re-
quired end loading is not shown. Provided nL<<X where

MIs

H-
D

Fig. 6-Equivalent form of small helix.

16 See, for example, S. Ramo and J. R. Whinnery, "Fields and
Waves in Modern Radio," John Wiley and Sons, New York, N. Y.,
1944; p. 430.

17 Rationalized mks units are used.

Introducing the relation between the area and diameter
of the loop, A = rD2/4, (3) becomes

Eo 2SX

E, ir2D2 (4)

In the general case, both Eo and EK have values and
the electric field is elliptically polarized. Since Eo and E,*
are in time phase quadrature, either the major or the
minor axis of the polarization ellipse will lie in a plane
through the polar or y axis (see Fig. 5(a)). Let us assume
that the y axis is vertical and that observations of the
field are confined to the equatorial or x-z plane. The
ratio of the major to minor axes of the polarization el-
lipse is conveniently designated as the axial ratio (A.R.).
Let us define the axial ratio in this case as

Eo 2SX
A.R. = -=(5

E,g 7r2D2

Thus, in the extreme case when EO =0, the axial ratio
is infinite and the polarization ellipse becomes a straight
Vertical line indicating linear vertical polarization. At
the other extreme, when Eo =0, the axial ratio is zero
and the polarization ellipse becomes a straight horizon-
tal line indicating linear horizontal polarization.
An interesting special case occurs for an axial ratio of

unity (Eo= E+). This is the case for circular polarization.
Setting the axial ratio in (4) equal to 1, we have

7rD=V/2SX or 7rDx=V/2Sx. (6)
This relation was first shown by Wheeler in an equiva-
lent form.7 For this case, the polarization ellipse becomes
a circle. The radiation is circularly polarized not only in
all directions in the x-z plane but in all directions in
space except the direction of the ±y axis, where the
field is zero.
The relation of helix dimensions for circularly polar-

ized radiation normal to the axis as given by (6) is indi-
cated in Fig. 2, and also in Fig. 7 by the curve marked
C.P. (Circular Polarization). This curve is accurate only
in the region for which rD<«X and S<KX. This region is
shown to an enlarged scale in Fig. 7. In general, the
radiation is elliptically polarized. If 7rD> x/25X, the
major axis of the polarization ellipse is horizontal, while
if irD<V2X the major axis is vertical. By varying the
pitch angle a of a helix of constant turn length L, ori-
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Fig. 7-Diameter versus spacing chart for small helices, showing
polarization for different dimensions.

ented as in Fig. 5(a), from the loop case a=00' as in Fig.
5(c) to the'straight conductor case a =900 as in Fig.
5(b), the radiation changes progressively through the
forms listed in Table I.

TABLE I
NORMAL RADIATION MODE

Position Condition Radiation
in Fig. 7

(1) S=O Linear (horizontal) polarization
az = 0°

(2) S>O and Elliptical polarization with major axis
irD > V\2SX of polarization ellipse horizontal

(3) 7rD = V/2SX Circular polarization

(4) 0 <1rD <V\/2SX Elliptical polarization with major axis
of polarization ellipse vertical

(5) irD = 0 Linear (vertical) polarization
a =90°

The five conditions of Table I are suggested by the
polarization ellipses at the five positions along the con-
stant-L (turn-length) curve in Fig. 7. The fact that the
linear polarization is horizontal for the loop and vertical
for linear conductors assumes, of course, that the axis of
the helix is vertical as in Fig. 5.

For a helix of fixed physical dimensions, the dimen-
sions in wavelengths change along a constant-pitch-
angle line as a function of frequency. Thus, as shown in
Fig. 7, circularly polarized normal-mode radiation is ob-
tained at only one frequency; that is, where the con-
stant-pitch-angle line for the helix intersects the C.P.
curve (point Q in Fig. 7).

In the above discussion of the normal mode of radia-
tion, the assumption is made of a uniform in-phase cur-
rent along the helical conductor. As already mentioned,
this assumption would be approximated if the helix is
small (nL<<X). To approximate such a distribution on
longer helices woul,d require a phase shifter of some type
at intervals along the conductor. This may be incon-
venient or impractical.

However, if the assumption of uniform, in-phase cur-
rent is made without regard as to how it might be pro-

duced, it is interesting to consider some of the above
relations further. Although the circularly polarized con-
dition of (6) is true only when nL<<X, the relation is
nevertheless approximately correct for larger values, say
for Sx and DA up to X/4. The inaccuracy of (6) for large
dimensions is due to the deterioration of (1) and (2)
when the dipole or the loop are not small. Even if field
formulas not restricted to small dipoles or loops are
used, another limitation in extending the small-helix
equations to helices of larger dimensions is that the
simplification of Fig. 6 is no longer adequate. This is be-
cause the field of the vertical component of one turn
of the helix cannot be properly approximated by a single
vertical dipole but must be represented by a series of
short dipoles at the circumference of the helix cyclinder.

Although there are practical limitations to the appli-
cation of the normal circularly polarized condition of
radiation from a pure helix, an antenna having four
slanting dipoles which is suggestive of a modified helix
radiating in the normal mode has been built by Brown
and Woodward.-8 Their arrangement is based on design
principles derived by Lindenblad.19

AXIAL RADIATION MODE

The preceding section deals mainly with small helices
(nL<<X). For this condition, the lowest To transmission
mode is dominant and any radiation is in the normal Rn
mode. When the circumference of the helix is increased
to about one wavelength (7rD--X), the first-order T1
transmission mode becomes important, and over a con-
siderable range of helix dimensions the radiation may
be in the axial R. or beam mode.
An outstanding characteristic of the axial or beam

mode of radiation is the ease with which it is produced.
In fact, owing to the extremely noncritical nature of the
helix dimensions in this mode, a helical beam antenna is
one of the simplest types of antennas which it is possible
to build.

In speaking of transmission modes, it is assumed that
the helix is infinite in extent. In discussing radiation
modes, the helix must be finite. For convenience, the
finite helix is assumed to be in the first approximation a
section of an infinite helix. The observed current-dis-

4)
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cc

Wave I:
-Region of rapid attenuation
Region of small attenuation

Open end
of helix

Wave 2

Distance along helix

Fig. 8-Resolution of current distribution on the helical beam an-
tenna into current distributions for outgoing and reflected waves.
Curves are idealized.

18 G. H. Brown and 0. M. Woodward. "Circularly polarized
omnidirectional antenna," RCA Rev., vol. 8, pp. 259-269; June, 1947.

19 N. E. Lindenblad, "Antennas and transmission lines at the Em-
pire State television station," Communications, vol. 21, pp. 13-14;
April, 1941.
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tribution and terminal-impedance characteristics pre-
sented in footnote references 2 and 3 form the basis for
making this assumption. Thus the observed current
distribution on a helix may be resolved into the current
distribution for an outward traveling wave and a cur-
rent distribution for an inward traveling wave of con-
siderably smaller magnitude, as in Fig. 8. Here each wave
is characterized by an initial region of relatively rapid
attenuation which is followed by a region in which the
current is relatively constant in value. Hallen20 has
pointed out that a similar type of current distribution
is characteristic for a traveling wave on a straight cyl-
indrical conductor. Current-distribution measurements
on long-straight cylindrical conductors by Bhargava,2"
when resolved into distributions for two traveling
waves, indicate that the initial attenuation is greater
for conductors of large diameter. In comparing the cur-
rent distributions on straight cylindrical conductors and
on helical conductors, it appears that a relatively thin
conductor of diameter d, wound as a helix, has a current
distribution with an initial attenuation for the compo-
nent traveling waves as large as that on a straight cy-
lindrical conductor of much greater diameter. The helix
must, of course, be radiating in the beam mode for this
to be the case. This large attenuation of the reflected
wave on the helical conductor results in the relatively
uniform current distribution over the central region of
long helices. The marked attenuation of both the out-
going and reflected waves also accounts for the relatively
stable terminal impedance of a helical antenna radiating
in the axial mode, since relatively little energy reflected
from the open end of the helix reaches the input. Thus
the SWR of current at the input terminals is

SR=10 + 12
SWR= 10 - 12

Since 12 is small compared to Io (see Fig. 8), the SWR
at the input terminals is nearly unity, the same as for a
transmission line terminated in approximately its char-
acteristic impedance.
When the helix is radiating in the axial mode, the

phase velocity of wave propagation on the helix is such
as to make the component electric fields from each turn
of the helix add nearly in phase in the direction of the
helix axis. The tendency for this to occur is sufficiently
strong that the phase velocity adjusts itself to produce
this result. This natural adjustment of the phase veloc-
ity is one of the important characteristics of wave trans-
mission in the T1 mode on a helix. It is this fact which
accounts for the persistence of axial-mode Ra radiation
patterns over such a wide frequency range. The phase
velocity of wave propagation along a helical conductor
is approximately equal to the velocity of light in free

20 Erik Hallen, private communication to the author, March 25,
1948.

21 B. N. Bhargava, "A study of current distribution on long radi-
ators," master's thesis, Department of Electrical Engineering, Ohio
State University, Columbus, Ohio; 1947.

space c when the frequency is too low for the axial Ra
mode of radiation. As the frequency is increased, it is
found that there is a frequency range in which the phase
velocity is decreased. In this same frequency range, the
radiation is observed to be in the axial Ra mode and the
current distribution changes from that due to two nearly
equal but oppositely directed traveling waves, to essen-
tially a single outgoing traveling wave and a small re-
flected wave, as in Fig. 8.

ARRAY FACTOR

As an approximation, a helical antenna radiating in
the axial mode can be assumed to have a single uniform
traveling wave on its conductor. Based on this assump-
tion, an approximate expression for the field pattern of
a single-turn helix is developed in footnote reference 2.
The pattern of a helix of a number of turns is then cal-
culated as an array of such turns by taking the product
of the pattern for the single turn and for the array.
When the helix is sufficiently long (nS large), the array
factor is dominant and largely determines the shape of
the helix pattern. Calculated and measured patterns for
a helix of 7 turns and 12° pitch angle (n = 7, a = 120) are
compared in Fig. 21 of footnote reference 2. As an exam-
ple which illustrates the dominant effect of the array
factor, the component electric field patterns for this
case are presented in Fig. 9. In this figure,

E,PT= pattern of horizontally polarized component for
one turn

EOT=pattern of vertically polarized component for
one turn

Yn= pattern of array of seven (n =7) isotropic point
sources spaced 0.225 wavelength (SA=0.225)
and for phase-velocity factor p = 0.83.

EO=ET Yn = pattern of horizontally polarized com-
ponent of electric field from entire helix

Helix

r-

Fig. 9-Patterns E, and Es for a seven-turn 120 helix as calculated
from the array factor Yn for an array of seven isotropic point
sources and the single-turn patterns E,T and EOT.
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Fig. 10-Linear array of isotropic point sources.

E=EOT Yn= pattern of vertically polarized com-
ponent of electric field from entire helix.

It is interesting to note that, although the patterns of
the horizontally and vertically polarized components for
a single turn are very different in form, the patterns of
the horizontally and vertically polarized components for
the entire helix are nearly the same.22 Furthermore, the
main lobes of the Ee and Eo patterns are very similar to
the array-factor pattern. Thus it is apparent that, for
long helices, a calculation of the array factor alone
suffices for the approximate helix pattern in any polar-
ization.
To calculate the array factor, a helix of n turns is re-

placed by n isotropic point sources separated by the
spacing S between turns of the helix. An array of n

point sources is illustrated by Fig. 10. The normalized
array factor (maximum value unity) is then given by
equations (18) and (19) of footnote reference 2, or more

simply by23

.n4
sin

1 2
Yn = - (7)

n .
sin

2

where n=any integer (1, 2, 3, -* * ), and VI is an auxil-
iary function giving the phase difference between succes-

sive sources in a particular direction 4. For VI = 0, (7) is
indeterminate, so that in this case it is necessary to take
Y,. in the limit as 41 approaches zero. The phase of the
wave arriving at a distant point P due to source 1 is
advanced over the phase of the wave from source 2 by
2wrS cos 4), but is retarded by 2irLx/P. This retardation
is proportional to the length of time required for a wave

to travel around one turn or from source 2 to 1.
The value of is then the difference of these. Thus,

2-7r C(Sxcos q5 --) (8)

22 The calculated Ee pattern of Fig. 21, footnote reference 2, is a
mirror image along the helix axis of the Ea pattern in Fig. 9. The
image was taken in footnote reference 2 to allow a direct comparison
between the left-handed helix used in the calculations and the right-
handed helix which was measured.

23 S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand
Co., Inc., New York, N. Y., 1943; p. 342.

where
S=-spacing between helix turns in free-space wave-

lengths
4) =direction angle with respect to helix axis

L4 =length of one helix turn in free-space wavelengths
p phase velocity factor = v/c, or

phase velocity along helix conductor

velocity of light in free space

It is interesting to examine the case for which the
fields from the sources arrive at a remote point on the
axis in the same phase; that is, when VI =- 27rm and 4) =0,
where m is any integer (0, 1, 2, - *). Then,

tt = m + SX.
p (9)

When m = 1, we have the approximate relation for the
T1 transmission mode:24

L4 L
--I S),or -=X

p
(10)

p
and, if p=1, L-S =X. Equation (10) is a fair approxima-
tion for helical antennas radiating in the axial mode.
The phase difference is actually observed to be slightly
greater, as given by the somewhat better approxima-
tion25

(11)
Lx
P 2n

where n =number of turns. The additional phase shift
represented by 1/2n results in sharper helix patterns, as
it does also for all end-fire arrays.26 The additional phase
shift is a natural phenomenon in the helical beam an-
tenna and is maintained over a considerable frequency
range. The condition of (11) will be referred to as the
condition for "maximum directivity."
When m = 2 we have the approximate relation for the

T2 transmission mode:

L = 2 +Sx.
p

(12)

The approximate relation for the general Tm transmis-
sion mode of higher order (m.1) is as given by (9).
If p =1, and introducing also the relation L2=S2+ir2D2
for a helix, we obtain D = V/2mS\+m2/7w and, when
m=1, DV= N/2Sx+ 1/-7r.
The diameter versus spacing chart of Fig. 11 has

curves of the helix relations for the T1 transmission

24 The ratio LA/p in (9) and (10) is the length of one turn measured
in terms of the wavelength on the helical conductor. This ratio times
2ir is the phase length of one turn in radians and will be designated
L,. Thus, from (10) we have Lp =2ir(1 +S\), which indicates that, for
the T1 transmission mode, one turn has a phase length of 27r radians
plus 2irS;,.

25 To convert (9) and (11) to radian measure, multiply both sides
by 27r, while to convert to degrees multiply both sides by 360.

26 W. W. Hansen and J. R. Woodyard, "A new principle in di-
rectional antenna design," PROC. I.R.E., vol. 26, pp. 333-345; March
1938.

1949 269



PROCEEDINGS OF THE I.R.E.
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SPACING IN WAVELENGTHS, SN
Fig. 11-Diameter versus spacing chart showing region for funda-

mental axial or beam mode of radiation.

mode for two cases of the phase-velocity factor p = 1 and
p=0.7. The cross-hatched area indicates the observed
region of the fundamental axial or beam mode of radia-
tion Ra. The two curves define quite well the upper and
lower limits of the region. A curve for a higher-order
transmission mode T2 is also shown in Fig. 11 for the
case of p= 1.

Returning to a further consideration of the axial
radiation mode, we have from (10), substituting also
Lx=wxDx/cos a and Sx = 7rDx tan a,

L>< 1
p I =S_+S 1

S tan a+ cosc

or

p= . (13)
cos a

sin a +
7rDx

Equation (13) gives the required variation in p for the
fields of each turn of a helix of pitch angle a to add in
phase in the axial direction.

In a similar way, we can obtain from (11) the required
variation of p for "maximum directivity" as

Lx 1
p

I =n I
(14)

1 /2n+ 1 ~ Q4
1 +-+ Sx sin a +1 cos a

2n 2irDx/

CONDITIONS FOR CIRCULAR POLARIZATION27
In this section, the conditions necessary for circularly

polarized radiation in the direction of the helix axis will
be analyzed. The discussion is concerned entirely with
helices radiating in the axial mode.

Referring to Fig. 12 (a), let us consider a helix of diam-
eter D = 2r having its axis coincident with the' z axis.
Expressions will be derived for the electric field at a
point P a large distance z1 in the direction of the axis
of a helical antenna, as shown. The antenna is assumed

27 In connection with the analysis in this section, it is a pleasure to
acknowledge the interest and criticisms of Victor H. Rumsey.

Traveling
wave (a)

S

Helix axis
z

-r r e
Y

1 gY < 4 |~~~Hli (b)

conduc or

Z1- g

Z To point P

Y

D < ;ire x (c)

Fig. 12-Relations for analysis of circular-polarization conditions.

to have a single uniform traveling wave. If the helix is
unrolled in the x-z plane, the relations are as indicated
in Fig. 12(b). Let point Q on the helix be a distance I
along the helix from the terminal (point T). It is also
convenient to specify a cylindrical co-ordinate system
as in Fig. 12(c), the angular position of Q with respect
to the x-z plane being given by 0. From the geometry
in Fig. 12, we have

g = I sin a

z- g = zi - I sin a (15)
a = arc tan (S/7rD) = arc cos (rO/l)
rO = 1 cos a.

At a large distance z1, the component of the relative
electric field intensity in the x direction E. for a helix
of an integral number of turns n is given by

r 2rn

Ex = EoJ sin Oeiw(t-zlIc+(lsin a)c-llpc)dO (16)

where

Eo=a constant involving the current magnitude on
the helix

c = velocity of light in free space (3X 108 meters/sec-
ond)

t = time in seconds
w = 27r (frequency)
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p = phase-velocity factor = v/c, where
v = phase velocity of wave propagating along helical

conductor.

Using the relations of (15), the last two terms of the
exponent may be re-expressed:

I sin a I rO I \ rob
_ tan a - 1-

c pc c p cos a/ c
(17)

where

1
b = tana -a-

p cos a

For a=0, we have a loop, and b=-1/p. Hence, the
relation being derived may be applied not only to the
general helix case but also the special case of a loop.
Since t and z1 are independent of 0, the first two terms of
the exponent may be taken outside the integral. Hence
(16) becomes

2rn

E Eoei(wtt-Azj) sin 6eikGdO (18)

where

(3= 2r/X

k-Irb=Lx (sin a--) (19)

Integrating and introducing limits, we obtain

El
Ex = - (ei2rnk - 1) (20)k2 - 1

where

E= Eoei(It-zlz).
The expression for the relative electric field intensity

in the y direction Ev is identical to (20) except that it
has cos 0 instead of sin 0. From this we obtain

Elk
Ey-(*

Elk

(ej2rnk -1) (21)
j(k2-1)

For circular polarization on the axis, the required condi-
tion is

_= + j. (22)
Ey

Taking the ratio of Et to Ey as given by (20) and (21),
we get

Ex
EX k

(23)

Hence, for circular polarization on the axis of a helix of
an integral number of turns (n=1, 2, 3, - ), k must
equal ± 1.

However, as will be shown, nearly circular polariza-
tion may be obtained provided only that the helix is

long and k is nearly unity. For this case, the number of
turns may assume noniintegral values. Hence, the length
of the helical conductor will be specified as 61 instead of
27rn. Thus, rewriting (18), we have

E-x [elei(kI±)O -ei(k-1)j]dO
2j o

(24)

which becomes, after integrating, introducing the condi-
tion k- -1, and the approximation for k+ 1 --0 that
ei(k+I)i-l +j(k+l)Oi,

El - ei(kl)11-1-

X- -_ k-1I
(25)

In a similar fashion, we obtain for the relative electric
field intensity component in the y direction, E,:

(26)

If the helix is very long (0»>>1), (25) and (26) become
very nearly

E101 E101
Ex= -.i 2 and EX,=.1 2 2

(27)

The ratio of these then gives Er/Ev= -j, which satisfies
the condition for circular polarization. Although these
give the important conditions for circular polarization,
another condition resulting in circular polarization is
obtained when (k ± 1)O1=2wm where m= integer. This
condition is fulfilled when either the positive or negative
sign in (k ± 1) is chosen, but not for both. To summarize
the important conditions :28

(1) The radiation in the axial direction from a helical
antenna of any pitch angle (O<a<900) and of an in-
tegral number of one or more turns will be circularly
polarized if k = ± 1.

(2) The radiation in the axial direction from a helical
antenna of any pitch angle (0 <a< 90°) and a large num-
ber of turns, which are not necessarily an integral num-
ber, is nearly circularly polarized if k is nearly ± 1.

Let us now investigate the significance of the require-
ment that k= ±1. Referring to (19), k is negative in
the case of interest, since sin a <. 1 and 1/p 1. Thus, for
k= -1 we have

or
Lx(sin a - = -1

p
Lix Lx

Lx sin az+ I SA + I
(28)

If p =1, the circular, polarization condition is La-S =1
or L-S=X. This was first pointed out in footnote refer-
ence 1. The relation for p in (28) is identical with the

28 A single, traveling wave (1 in Fig. 8) is assumed on the helix
and the effect of the reflected wave (2 in Fig. 8) is neglected. The
effect of the reflected wave on the axial ratio is discussed in fQotnote
reference 2, p. 91.
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value of p required for the fields of each turn of a helix
to add in phase in the axial direction as given by (13).29

PHASE-VELOCITY COMPARISON

Several expressions for the required phase-velocity
factor p have been derived corresponding to different
conditions. These are summarized for the T, transmis-
sion mode in Table II. Two of the expressions are iden-
tical, namely, for circular polarization (C.P.), and in-
phase fields from each turn. In Table II, 4o is the value
of 4 at the first null in the radiation pattern, and 4'o is the
value of ^,t at the first null in the array factor.

TABLE II

Condition Required Phase-Velocity Factor p

(1) and (2) C.P. and in- La I
phase fields p= =-

Sx++ Cos a
sin a+

7rDX

L> 1
(3) Maximum directivity p =-

1 2n+1 \cos a
SX+1+- sin a-+-(

2n 2n / rDX

(4) From first null of L4
measured pattern30 p=

Po
SX\ Cos 4s+1+

2ir

Curves calculated by the three different methods of
Table II are compared in Fig. 13 with the measured varia-
tion of the phase velocity as a function of frequency on a

seven-turn 120 helix.31 All curves are in general agree-
ment in the region in which p increases with frequency.32
In Fig. 13, 300 Mc corresponds to a helix circumference
of 0.72 free-space wavelengths and 500 Mc to a helix
circumference of 1.2 free-space wavelengths. It can be
effectively demonstrated that p for "maximum directiv-
ity" is most probably the one actually occurring on the

lCL1,0
;.7

>~.8-0

.9

>, .8

8 .6

300 350 400 450
Frequency in megacycles/sec.

500

Fig. 13-Comparison of variation of measured phase-velocity factor
(p =v/c) with frequency on a seven-turn 12° helix with the calcu-
lated variation for several conditions.

29 The condition was expressed in equation (1) of footnote refer-
ence 1 as L-S=nX where n corresponds to m in the present paper.
Two corrections to footnote reference 1 are that n may be any integer,
not merely an odd integer, and the same condition is not for maximum
directivity but for the fields from each turn to add in phase.

30 See p. 96 of footnote reference 2.
31 This is the same helix as shown in Fig. 5 of footnote reference

2, D=23 cm.
10 The agreement of the measured velocity factor with p for maxi-

mum directivity is better than with p for in-phase fields.

helix by noting the close agreement of measured field
patterns with array-factor patterns calculated with this
value of p and the poor agreement when other values of
p are used.

SINGLE-TURN PATTERN
The pattern of a single turn is an important factor in

determining the pattern of short helices. In the case of
long helices, the array factor is relatively more impor-
tant, and is usually sufficient to give the approximate
main-lobe pattern of the helix. However, it is neverthe-
less necessary that the direction of maximum radiation
from a single turn be approximately in the axial direc-
tion. Accordingly, it is of interest to investigate briefly
the form of the single-turn pattern of helical antennas
radiating in the axial mode. Referring to the preceding
sections, the condition k -1 also results in the single-
turn pattern maximum being nearly in the axial direc-
tion. This follows from the fact that when a is small the
length of a turn is nearly one wavelength, so that the
instantaneous current directions on a single turn are as

shown in Fig. 14(a). If a is small, this is approximately
equivalent at one instant of time to a broadside array of
two short dipoles spaced by about the diameter of the
helix, as in Fig. 14(b). Since the dipoles are in phase,
the maximum radiation is normal to their plane or in
the axial direction. The pattern is also very broad in the
axial direction, as indicated. With passage of time, these
equivalent dipoles rotate around the axis, yielding cir-
cular polarization. If a is not small, then it becomes nec-

essary to approximate the single turn of the helix by a

square turn with four short linear segments, as was done
in the pattern calculations of footnote reference 2. A
square turn is suggested by the perspective sketch in Fig
14(c). Since the wave on the helix is, to a good approxi-
mation a single, traveling wave, the radiation maximum
is tilted forward from the normal to the conductor. As
shown in footnote reference 2, it turns out that the tilt
angle r of the radiation maximum for a short segment
(Dr.0.3X) is of the order of 100. When a=r, the radia-
tion maximum for each segment is in the axial direction
(Fig. 14(d)). Adding the fields of the segments gives the
single-turn pattern.

Wave direction

(a)

lnstantoneous'
current \\Axis
directions

\Rotation direction

ZtCXjS (b)Axis

(c) (d)

Fig. 14-Relations for discussion on pattern of single turn.

Circular polarization and fields in phase7
Maximum directivity /
Measured p

- - -§-c--Calculated
from measured

- pattern nulls
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